6 research outputs found

    Wait, I\u27m tagged?! Toward AR in Project Aquaticus

    Get PDF
    Human-robot teaming to perform complex tasks in a large environment is limited by the human’s ability to make informed decisions. We aim to use augmented reality to convey critical information to the human to reduce cognitive workload and increase situational awareness. By bridging previous Project Aquaticus work to virtual reality in Unity 3D, we are creating a testbed to easily and repeatedly measure the effectiveness of augmented reality information display solutions to support competitive gameplay. We expect the human-robot teaming performance to be improved due to the increased situational awareness and reduced stress that the augmented reality data display provides

    Creating a Multifarious Cyber Science Major

    Get PDF
    Existing approaches to computing-based cyber undergraduate majors typically take one of two forms: a broad exploration of both technical and human aspects, or a deep technical exploration of a single discipline relevant to cybersecurity. This paper describes the creation of a third approach—a multifarious major, consistent with Cybersecurity Curricula 2017, the ABET Cybersecurity Program Criteria, and the National Security Agency Center for Academic Excellence—Cyber Operations criteria. Our novel curriculum relies on a 10-course common foundation extended by one of five possible concentrations, each of which is delivered through a disciplinary lens and specialized into a highly relevant computing interest area serving society’s diverse cyber needs. The journey began years ago when we infused cybersecurity education throughout our programs, seeking to keep offerings and extracurricular activities relevant in society’s increasingly complex relationship with cyberspace. This paper details the overarching design principles, decision-making process, benchmarking, and feedback elicitation activities. A surprising key step was merging several curricula proposals into a single hybrid option. The new major attracted a strong initial cohort, meeting our enrollment goals and exceeding our diversity goals. We provide several recommendations for any institution embarking on a process of designing a new cyber-named major

    Infusing Principles and Practices for Secure Computing Throughout an Undergraduate Computer Science Curriculum

    No full text
    In recent years, all computing disciplinary communities and curricular guidelines have increased their expectations of and requirements for incorporating cybersecurity into their discipline. For computer science, this has been a daunting task for a number of reasons, including the fast-paced evolution and expansion of the discipline, the perceived challenge of finding space in the curriculum, and the difficulty of selecting the best content. This paper takes the position that infusing security concepts pervasively into an undergraduate Computer Science program is a crucial and attainable best practice. A five-step methodology is presented to incorporate cybersecurity into a traditional computer science curriculum in a way that maintains disciplinary integrity without adding significant new curricular content. This methodology is consistent with the philosophy and recommendations of the latest computer science and cybersecurity curricular guidelines. The paper also illustrates the application of these techniques to a typical Computer Science program

    Virtual Reality for Immersive Human Machine Teaming with Vehicles

    No full text
    We present developments in constructing a 3D environment and integrating a virtual reality headset in our Project Aquaticus platform. We designed Project Aquaticus to examine the interactions between human-robot teammate trust, cognitive load, and perceived robot intelligence levels while they compete in games of capture the flag on the water. Further, this platform will allows us to study human learning of tactical judgment under a variety of robot capabilities. To enable human-machine teaming (HMT), we created a testbed where humans operate motorized kayaks while the robots are autonomous catamaran-style surface vehicles. MOOS-IvP provides autonomy for the robots. After receiving an order from a human, the autonomous teammates can perform tasks conducive to capturing the flag, such as defending or attacking a flag. In the Project Aquaticus simulation, the humans control their virtual vehicle with a joystick and communicate with their robots via radio. Our current simulation is not engaging or realistic for participants because it presents a top-down, omniscient view of the field. This fully observable representation of the world is well suited for managing operations from the shore and teaching new players game mechanics and strategies; however, it does not accurately reflect the limited and almost chaotic view of the world a participant experiences while in their motorized kayak on the water. We present creating a 3D visualization through Unity that users experience through a virtual reality headset. Such a system allows us to perform experiments without the need for a significant investment in on-water experiment resources while also permitting us to gather data year-round through the cold winter months
    corecore